
REVIEW ARTICLE

Tutorial: a beginner’s guide to interpreting
magnetic susceptibility data with the
Curie-Weiss law
Sam Mugiraneza 1,2 & Alannah M. Hallas 1,3✉

Magnetic susceptibility measurements are often the first characterization tool that

researchers turn to when beginning to assess the magnetic nature of a newly discovered

material. Breakthroughs in instrumentation have made the collection of high quality magnetic

susceptibility data more accessible than ever before. However, the analysis of susceptibility

data remains a common challenge for newcomers to the field of magnetism. While a com-

prehensive treatment of the theoretical aspects of magnetism are found in numerous

excellent textbooks, there is a gap at the point of practical application. We were inspired by

this obstacle to put together this guide to the analysis and interpretation of magnetic sus-

ceptibility data, with an emphasis on materials that exhibit Curie-Weiss paramagnetism.

Magnetic materials are of tremendous importance in both fundamental science and in
applications-driven research. The experimental toolkit for characterizing magnetic
materials continues to grow year after year, with advanced new experiments providing

remarkable insights1–4. However, for newly synthesized materials, there is one indispensable
characterization technique that is as old as the field of magnetism itself: magnetic susceptibility, χ,

M ¼ χH; ð1Þ
which is the quantity that relates a material’s magnetization, M, to the strength of an applied
magnetic field, H. In this tutorial we will proceed with the conventional usage, which assumes that
these two quantities are linearly related, which is typically most valid at high temperatures and
low fields. In very general terms, magnetic susceptibility measurements tell you how your material
responds to an applied magnetic field, which can be used to unveil the magnetic identity of your
material. Susceptibility measurements can be performed in a direct current (DC) field, giving
insights on the static magnetic properties, or an alternating current (AC) field in order to probe
the dynamic properties.

For more than a hundred years, the preferred method for measuring magnetic susceptibility
was based on determining the apparent weight of a sample in a magnetic field, as in the Gouy
and Faraday balance techniques5–7. However, in the modern era, more precise measurements
have been unlocked through the advent of the SQUID (Superconducting Quantum Interference
Device, see Box 1) magnetometer and its subsequent commercialization8–10. Procuring high-
quality temperature-dependent magnetic susceptibility measurements down to liquid helium
temperatures, or colder, has therefore never been easier. At the data collection stage, your
instrument’s user manual is an important resource, that can guide you on the optimal conditions
under which to perform your measurement. There is, however, no equivalent, compact resource
for the next step: analyzing and interpreting your data set. Instead, one must often resort to
haplessly skimming through the literature hoping to stumble upon data that resembles their
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own. Our objective here is to fill that gap by cataloging the range
of behaviors that can arise in magnetic susceptibility measure-
ments, particularly in the temperature range above any ordering
transition.

In this tutorial, we provide a guide to the interpretation of
magnetic susceptibility data with a special emphasis on the
Curie–Weiss law, a simple but powerful equation. Our hope is
that this tutorial can supplement many excellent and compre-
hensive textbooks on the magnetism of solids11–14, which lay the
foundation for the topics discussed here. In Box 1 we provide a
brief glossary for some key terms that will be used throughout.
Our discussion here explicitly focuses on susceptibility measured
with a DC field, as this is the most routine type of measurement
for the characterization of new materials. All data presented
herein has been measured with an applied DC field. However,
much of the theoretical underpinnings discussed in the sections
that follow apply equally to DC and AC susceptibility measure-
ments. Indeed, in the limit where there are no low-energy exci-
tations, measurements in an AC and DC field are equivalent.
When this limit does not hold, AC susceptibility can provide
additional insights15,16.

Review of the topic
Magnetism units. Unit systems are a common stumbling block
for newcomers to the field of magnetism. While the cgs (cen-
timeter-gram-second) system is more prevalent, some sources
prefer SI (international system) units. Converting between these
two unit systems in the context of magnetism is a particularly
error prone activity with several subtleties. It is important to
follow the conventions of your field and also to familiarize
yourself with conversions for the most frequently used units. For
example, molar susceptibility data are commonly represented in
emumol−1 (cgs), which can be converted into m3 mol−1 (SI), by
multiplying by a factor of 4π ⋅ 10−6. Note that, in cgs units,
emu Oe−1 is equivalent to emu and thus Oe is often omitted from
susceptibility units in the axes labels of published figures. The

appendices in several books have useful tables for SI-cgs
conversion11,14,17 and Bennett et al. provides an interesting his-
torical perspective18. Here, we will primarily proceed with cgs
units, as these are default units of most commercial SQUID
magnetometers and also the unit system that one more com-
monly encounters in the physics literature, but key equations are
provided in both cgs and SI unit systems.

Contributions to magnetic susceptibility. In this section, we
briefly introduce the various diamagnetic and paramagnetic
contributions to magnetic susceptibility that can arise depend-
ing upon the magnetic and electronic character of the material
in question. We begin with orbital (or core) diamagnetism,
which occurs in all materials, before moving on to the local
moment contributions to magnetism: Curie–Weiss para-
magnetism and van Vleck paramagnetism. We then briefly
outline the contributions that arise in metallic materials: Pauli
paramagnetism, Landau diamagnetism, and the temperature-
dependent paramagnetic response observed in itinerant moment
systems. Finally, we describe the characteristic forms of various
types of ordering or freezing transitions, which can be detected
with magnetic susceptibility measurements. It is worth empha-
sizing that these contributions are not mutually exclusive; for
example, a magnetic rare earth metal will have Curie–Weiss
paramagnetic, Pauli paramagnetic, and core diamagnetic terms
in its susceptibility.

Orbital diamagnetism. Orbital diamagnetism, which describes the
tendency of electrons to repel a magnetic field giving rise to a
negative susceptibility, is a property of all materials. In a classical
framework, the origin of diamagnetism is often discussed in terms of
Lenz’s law, which states that an applied field on the orbital motion of
an electron induces a current that opposes the applied field. How-
ever, a rigorous derivation of the diamagnetic response of electrons
requires a quantum mechanical description based on first order
perturbation theory11,19. The diamagnetic susceptibility, χD, in units

Box 1 | Glossary of important terms for magnetic susceptibility measurements

• SQUID magnetometer: a high sensitivity instrument that uses a SQUID (an acronym for Superconducting QUantum Interference Device) to enable
the direct measurement of a material’s magnetic susceptibility. A SQUID is a superconducting loop with two parallel Josephson junctions that can
detect incredibly small changes in magnetic flux. The two other components that make up the SQUID magnetometer are a superconducting magnet and
a cryostat, which allow field and temperature-dependent susceptibility measurements to be performed.
• Susceptibility and magnetization: colloquially, these terms are often used interchangeably to describe the magnetic field induced in a material
through the application of an external magnetic field. Generally, the term susceptibility is preferred for measurements performed with varying
temperature and fixed applied field while magnetization is more often used to refer to measurements performed at fixed temperature with varying
applied field.
•DC and AC susceptibility: measurements of magnetic susceptibility can be collected with a DC (direct current) or AC (alternating current) applied
field. In a DC measurement, the field is held constant and the measurement is obtained under equilibrium conditions. Conversely, in an AC susceptibility
measurement, the field oscillates inducing a time-dependent magnetization that provides insights on the material’s dynamics. In an AC measurement,
the response can also depend upon the frequency at which the field is alternated.
• Paramagnetic and diamagnetic: these terms generally refer to the sign of the susceptibility as related to the direction of the external magnetic field,
with paramagnetic referring to a positive susceptibility (net moment in the same direction as the applied field) and diamagnetic referring to a negative
susceptibility (net moment opposing the magnetic field).
• Field cooled (FC) and zero-field-cooled (ZFC): the initial state of a material in a susceptibility measurement can depend on whether the sample was
measured under FC or ZFC conditions, which describe whether the sample was cooled down in the presence or absence of an applied magnetic field,
respectively. Divergence between measurements performed in FC and ZFC conditions, often termed splitting, indicates hysteresis (dependence on the
magnetic field history), which can be indicative of various ordered and frozen magnetic states.
• Isotropic and anisotropic: these terms are used to distinguish material properties that depend on measurement direction from those that do not. In
the case of magnetic susceptibility, this means the crystallographic direction along which the magnetic field is applied. The most common origin of
anisotropy is crystal field effects that can constrain the moments to lie along specific axes or within a specific plane. Detecting anisotropy generally
requires single crystal samples since, in a polycrystalline sample, all directions are averaged over.
• Exchange interactions: the quantum mechanical mechanism through which neighboring magnetic ions interact with one another, which can
ultimately result in long-range magnetic order. This exchange can occur directly, when the orbitals of the magnetic ions themselves overlap, or
indirectly, through an adjoining ligand such as oxygen via a superexchange mechanism, or by the conduction electrons, which is known as the RKKY
(Ruderman–Kittel–Kasuya–Yosida) interaction.
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of emumol−1 [cgs] or m3mol−1 [SI] is given by

χD ¼ � ne2

6mec2
hr2i ½cgs� ¼ � nμ0e

2

6me
hr2i ½SI� ; ð2Þ

where n is the number of electrons per mole, μ0 is the vacuum
permeability, e is the elementary charge, 〈r2〉 is the average square
radius of the electron orbit, me is the electron mass, c is the speed of
light in vacuum, and the negative sign reflects the repulsive ten-
dency. While diamagnetism occurs in all materials, it is a weak effect
(−10−6 to−10−5 emumol−1) that is typically overshadowed by any
other contribution to the magnetic susceptibility. Therefore, the label
diamagnet is reserved for materials where diamagnetism is the only
contribution to the susceptibility, typically insulators with no
unpaired electrons.

In many cases, the diamagnetic contribution to the suscept-
ibility is so small that it can simply be ignored. However, in
certain situations, it may be desirable to correct the measured
data by subtracting off the diamagnetic term. This is a relatively
straightforward task because the diamagnetic contribution is
temperature independent and can be accurately approximated
using tabulated values for the constituent ions20. The total
diamagnetic susceptibility is then simply the sum over all atoms.
While this approach provides a reasonable estimate, it’s worth
emphasizing that these tables assume purely covalent or purely
ionic environments while real materials often exist between these
two extremes.

Curie–Weiss paramagnetism. Unlike the diamagnetic response,
which occurs in all materials, paramagnetism occurs exclusively
in “magnetic” materials—materials with unpaired electrons. At
some temperature commensurate with the strength of the mag-
netic correlations, these magnetic materials may undergo a
symmetry breaking transition to a magnetically ordered state.
However, at relatively higher temperatures, the material exists in
magnetically disordered gas-like state known as a paramagnet,
where thermal fluctuations are stronger than the interactions
between magnetic ions. There is much that can be learned from
studying the susceptibility of a paramagnet. In particular, a mean

field treatment of this state gives the equation at the heart of this
paper, the Curie–Weiss law.

The Curie–Weiss law, which is derived as an extension of
Curie’s law by incorporating the concept of Weiss’s molecular
field is

χ ¼ C
T � θCW

½cgs and SI�; ð3Þ

where C is known as the Curie constant (with units emu Kmol−1

in cgs or m3 Kmol−1 in SI) and θCW (with units K) is often
referred to as the Curie–Weiss temperature. This equation
captures the tendency for the moments in a paramagnet to align
with the external field. This results in a susceptibility that increases
with decreasing temperature, as thermal fluctuations become less
potent (see Fig. 1(a)). The Curie constant C is directly related to
the number of unpaired electrons and, once determined, can be
used to calculate the effective magnetic moment per ion in units
of Bohr magnetons, μB,

μeff ¼
ffiffiffiffiffiffi
8C

p
μB ½cgs� ffi 800

ffiffiffiffi
C

p
μB ½SI� : ð4Þ

This effective moment can be directly compared to the
calculated value for the ion in question, given by

μcal ¼ gJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ

p
μB; ð5Þ

which depends only on its total angular momentum J and its
g-tensor gJ (for more on determining J refer to the sections on
Hund’s rules in your preferred magnetism textbook11,14,19). It’s
worth emphasizing that the derivation of the Curie–Weiss law
presupposes the existence of a well-defined angular momentum
ground state.

The magnitude of the Curie–Weiss temperature θCW is related
to the strength of the molecular field, which can be taken as an
approximate indicator of the strength of the magnetic correla-
tions between ions. Positive values of θCW occur when the
molecular field aligns with the external field, indicating
ferromagnetic interactions, whereas negative values of θCW imply
antiferromagnetic interactions (Fig. 1(b)). As the temperature
grows close to ∣θCW∣, the mean field treatment breaks down and
deviations from the Curie–Weiss law are expected, which could
include a transition to a magnetically ordered or frozen state (see
Box 2). For ferromagnets, one often finds that TC ≈ θCW whereas
larger deviations are typically observed for antiferromagnets,
TN < ∣θCW∣, due to an oversimplification of how the molecular
field is defined. In some cases, the value is even further
suppressed due to the effect of frustration, as will be discussed
later in this tutorial.

The best adherence to Curie–Weiss behavior is encountered in
4f rare earth compounds and insulating 3d transition metal
compounds, which will be discussed in detail below. In the former
case, this is because the 4f electron orbitals are highly spatially
localized and thus, even in metallic materials, they are buried so
deep below the conduction band that the magnetic moments are
completely localized. In the case of 3d transition metals, Mott
insulating states are often observed due to the dominant effect of
Coulomb repulsion giving rise to well localized 3d magnetic
moments. These are the two classes of materials we will therefore
focus our remarks on here. However, it’s worth emphasizing that
good realizations of Curie–Weiss behavior can also be found
elsewhere on the periodic table, including among 4d and 5d
transition metal compounds. With these more spatially extended
orbitals there is an increasing tendency towards metallicity, with
the partially filled d band constituting the conduction band,
leading to the breakdown of the Curie–Weiss description.

Fig. 1 Appearance of Curie–Weiss behavior in direct and inverse
susceptibility. a Curie–Weiss susceptibility due to paramagnetic local
moments goes as 1/T and is typically at least an order of magnitude larger
than than other temperature independent contributions to susceptibility
such as Pauli or van Vleck paramagnetism (PM), or orbital and Landau
diamagnetism (DM). b The inverse susceptibility of a material that follows
the Curie–Weiss law will be linear in temperature and the x−intercept gives
the Curie–Weiss temperature (θCW) with positive values indicating net
ferromagnetic (FM) interactions, negative values indicating
antiferromagnetic (AFM) interactions, and values close to zero indicating
negligible interactions.
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van Vleck paramagnetism. Our discussion of paramagnetism thus
far has considered only the affect of an applied magnetic field on
electrons in their angular momentum ground state. However, in
all cases where there are partially filled electron orbitals, higher
energy angular momentum states do exist. A correction of the
quantum mechanical treatment used to obtain the expression for
core diamagnetism with second order perturbation theory yields
an additional positive term that depends on these excited states
known as van Vleck paramagnetism. This temperature indepen-
dent term is inversely proportional to the energy gap between the
angular momentum states. In the vast majority of materials, this
energy gap is so large that, at experimentally relevant tempera-
tures, van Vleck paramagnetism can be entirely ignored. The
most notable exceptions are compounds based on Eu3+ and
Sm3+, which have energy gaps to the first excited state that are
comparable to thermal energy at room temperature.

Pauli paramagnetism and Landau diamagnetism. The suscept-
ibility of non-localized conduction electrons, which by definition
is only relevant to metals, is called Pauli paramagnetism. In the
absence of a magnetic field, the number of spin up and spin down
electrons in the partially filled conduction band are equal. How-
ever, the application of a magnetic field breaks the degeneracy of
the spin-up and spin down bands, resulting in a small imbalance
of spins aligned with the external field, yielding a positive sus-
ceptibility. The Pauli susceptibility, χP, is well-approximated by the
notably temperature-independent expression

χP ¼ μ2BgðEFÞ ½cgs� ¼ μ0μ
2
BgðEFÞ ½SI� ; ð6Þ

which depends only on the density of states at the Fermi energy,
g(EF). The Pauli susceptibility is typically weak, of order 10−4 to
10−5 emumol−1, because the applied field only affects the small
fractions of electrons that are close to the Fermi level17.

The associated orbital contribution to the susceptibility of
conduction electrons is called Landau diamagnetism, χL. In a free
electron model, the Landau diamagnetic response is precisely one
third of the Pauli paramagnetic response, but with opposite sign.

However, the ratio of these two terms is sensitive to details of the
band structure and can vary significantly in cases where the
effective mass of the conduction electrons, m*, is significantly
different from the free electron mass, me.

Temperature-dependent itinerant moment paramagnetism. While
the paramagnetic response of conduction electrons is typically
small and temperature independent, there are a special subset of
materials that buck this trend due to the presence of intense
electron–electron correlations. These materials are known as
itinerant magnets. In contrast to local moment magnetism, which
arises in individual atoms with unpaired electrons, itinerant
moment magnetism is an inherently collective behavior origi-
nating from the electron bands, which cross the Fermi
energy21–23. As is the case for a local moment system, itinerant
magnets can undergo a magnetic ordering transition at a tem-
perature characteristic of the strength of the interactions. It is,
however, worth emphasizing that itinerant magnets are vastly
outnumbered by local moment systems and that many real
materials are found to exist in an intermediate regime with dual
local-itinerant character.

While the physical origin of local and itinerant moments are
distinct, a striking fact is that itinerant magnets also exhibit a
Curie–Weiss like susceptibility: that is to say, χ is inversely
proportional to temperature above the magnetic ordering
transition. This effect originates from the temperature depen-
dence of the mean square local amplitude of the spin fluctuations,
as first described by Moriya21. Thus, while one can fit the
paramagnetic susceptibility of an itinerant magnet to the standard
Curie–Weiss equation, the underlying physics is fundamentally
different and therefore θCW and μeff do not retain the same
meaning. Unlike their local moment counterparts, where only
certain values of the effective moment, μeff ¼

ffiffiffiffiffiffi
8C

p
, are allowed

due to the quantized values of the angular momenta quantum
numbers, in itinerant magnets, atomic spin is no longer well-
defined. Therefore, the fitted effective moment for an itinerant
magnet, which depends on details of the electronic band

Box 2 | Signatures of various types of phase transitions in magnetic susceptibility

• Ferromagnets order at the Curie temperature (TC), which is marked by a divergent susceptibility due to the moments spontaneously aligning with the
applied magnetic field. In ferromagnets with hysteresis, careful low-field measurements under FC and ZFC conditions will reveal a large splitting at
temperatures below TC. This is due to the random orientation of pinned ferromagnetic domains in the ZFC state whereas in FC conditions the sample
will form a single domain aligned with the external field. Ferromagnetic transitions can also occur without splitting at large fields or in systems with no
measurable hysteresis. In either case, the saturation value of the susceptibility in FC conditions should correspond to the full magnetic moment (note
the useful relationship that 5585 emu per mol= 1 μB per f.u.)
• Ferrimagnets have a susceptibility that qualitatively resembles a ferromagnet, particularly in the vicinity of TC. Ferrimagnetic transitions can be
distinguished from ferromagnetic transitions by the saturation value of their susceptibility, which will be smaller than the full magnetic moment. If the
two sublattices in a ferrimagnet have different ordering temperatures or if their ordered moments grow at different rates, one can see additional
features beyond what is expected in a simple ferromagnet. For example, the susceptibility of a ferrimagnet may approach zero at the so-called
compensation temperature, where the moments on the two sublattices precisely cancel one another out.
• Antiferromagnets order at the Néel temperature (TN), which is marked by a cusp in susceptibility. In textbook cases, the susceptibility will continue to
decrease towards the lowest temperatures. However, in many real materials the susceptibility will continue to increase below the ordering transition
due to paramagnetic impurities, often termed a Curie tail. Curie tails, which go as 1/T, can also be observed in non-magnetically ordered materials. For a
simple antiferromagnet, TN will be suppressed with increasing field. However, many antiferromagnets have complex temperature-field phase diagrams
due to competing interactions.
• Spin glasses freeze at a temperature Tf that is usually marked by a cusp in susceptibility closely resembling the cusps seen in antiferromagnets, when
measured under ZFC conditions. However, when measured under FC conditions the susceptibility of a spin glass will be temperature independent below
Tf, producing a large FC-ZFC splitting. The smoking gun signature for a spin glass transition is frequency-dependent AC susceptibility measurements,
where the transition should shift to higher temperatures with increasing field oscillation frequency.
• Superconductors have a zero resistance state giving rise to perfect diamagnetic screening and marked by an abrupt decrease in the susceptibility. In
the superconducting state, the volume susceptibility is exactly −1 in SI units or −1/4π in cgs units. However, one must take care to cool the sample
through the superconducting transition in ZF conditions and measure the susceptibility in a suitably small field so as not to disrupt the superconducting
state, typically 10 Oe or smaller. In real measurements, significant deviations from the perfect superconducting volume susceptibility are typical due to
inhomogeneity or demagnetizing (shape) effects.
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structure, is not confined to take any specific values and is often
smaller than the smallest local moments.

Phase transitions. The detection of a magnetic ordering or spin
freezing transition via magnetic susceptibility is generally
straightforward, as they are typically marked by a sharp dis-
continuity. The qualitative appearance of the discontinuity, its
field dependence, and its response to field-cooled (FC) and zero-
field-cooled (ZFC) conditions provides key insights that can be
used to deduce the nature of the ordered or frozen state (see
Box 1). However, in all but the simplest cases, determining the
exact spin configuration requires additional experimentation—
specifically, neutron diffraction. The qualitative behaviors of
various phase transitions that can be detected via susceptibility
are described in Box 2 and representative examples are shown in
Fig. 2.

Some magnetic materials may exhibit no magnetic ordering or
freezing down to the lowest measurable temperatures. For
example, materials with a small concentration of magnetic ions
(also known as dilute magnets) may fall below the percolation
threshold, which defines the density of magnetic ions required to
obtain collective behavior depending on the geometry of the
lattice, which is the case for the data set shown in Fig. 2(a).
Another scenario through which ordering transitions are
suppressed is magnetic frustration, as will be discussed in a later
section. While these two scenarios can, at first blush, appear
similar, the former will yield Curie–Weiss temperatures close
to zero while the latter should not. A rare, but potentially
confounding scenario can occur if your material orders above the
measured temperature range, which is 400 K in typical set-ups. In
this case your measurement will not conform with any of the
behaviors described here since the paramagnetic regime is never
accessed.

Practical considerations. With this brief synopsis on the theo-
retical underpinnings of magnetic susceptibility, we next move on
to a topic of practical importance—how to collect a high-quality
data set and, then, how to perform a quantitative analysis. Our
focus here is measurements on polycrystalline or so-called
“powder” samples, which are often more readily attainable. In
polycrystalline measurements, rather than applying the magnetic
field along one distinct crystallographic direction, all sample
orientations are measured simultaneously and averaged over.
Thereby, any information about anisotropy (directional depen-
dence, see Box 1) is lost. In this section, we suggest some simple
steps that we believe can help a newcomer to quickly assess their
data set and begin to make sense of it.

1. Accurately record the mass of your sample prior to your
measurement. For best results, use a four place balance and
measure in triplicate.

2. Optimize your measurement parameters. This includes
mounting your sample in a way minimizes the background
contribution (for polycrystalline samples, we suggest an
inverted gel capsule), and choosing an appropriate mass of
sample and applied field magnitude. For best results,
consult your instrument’s user manual. Increasing the
sample mass and applied field magnitude will both have
the effect of increasing your overall signal to noise.
However, be aware that the assumed linear relationship
between M and H can breakdown at high fields.

3. Convert the measured magnetization into molar suscept-
ibility using the following formula

χmol½emumol�1
N Oe�1� ¼ M½emu�

H½Oe�
M½gmol�1�
m½g� � n

� �
ð7Þ

where M confusingly denotes the magnetization, in the first
term, and the molar mass, in the second term, H is the
applied field, m is the sample mass, and n is the number of
magnetic ions, N, per formula unit. Units are indicated for
each term in the square brackets. In cases where the
number of magnetic ions is unknown, you can use n= 1 to
obtain molar susceptibility per formula unit.

4. Use this data to generate a plot of χmol vs. temperature, T.
Consider what contributions to susceptibility you expect to
be present in your material (making use of the previous
section). The steps that follow are specifically for systems in
which a Curie–Weiss (local moment) contribution is
expected. In those cases, at temperatures above any
magnetic ordering or freezing transition, you should see a
susceptibility that rapidly increases with decreasing
temperature.

5. Plot χ�1
mol vs. T. If a linear regime is observed, fit that data to

the Curie–Weiss equation

χ�1 ¼ T � θCW
C

¼ T
C
� θCW

C
ð8Þ

yielding a linear relationship in which the slope is 1/C, the
y-intercept is θCW/C, and the x-intercept is θCW. Using Eqn.
(4), calculate the effective moment, μeff, and compare that
value with what is expected for your magnetic ion using
Eqn. (5) (more details on this are provided in the respective
sections on 4f rare earth magnets and 3d transition metals).

6. All fitting should be performed with χ−1 vs. T and not χ
vs. T. This is because, in χ vs. T fitting, chi-squared
minimization fitting routines will overly weight the lowest

Fig. 2 Examples of ordering transitions in magnetic susceptibility. Magnetic susceptibility measurements are sensitive to the presence (or absence) of
long-range ordering transitions. a Materials with dilute magnetic moments may remain paramagnetic down to the lowest temperatures, such as
this reproduced data set for dilute Mn2+ moments in SrMn1/2Te3/2O6

64. b Ferromagnetic (and ferrimagnetic) transitions are marked by a sharp increase in
the susceptibility as the moments align with the external field, as shown for Ni0.68Rh0.32 with TC= 96 K65. c Antiferromagnetic transitions are marked by a
sharp cusp in the susceptibility, as shown for Gd2Pt2O7 with TN= 1.6 K66. d Superconducting transitions are marked by an abrupt decrease in the
susceptibility due to the perfect diamagnetic screening in the superconducting states, as shown for PbTaSe267.
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temperature data points where the susceptibility is largest
but where the expected adherence to Curie–Weiss behavior
is worst. Also, temperature independent contributions to
the susceptibility can go undetected in χ vs. T plots but not
in χ−1 vs. T (see Fig. 3). The fitting range cutoff in χ−1 vs. T
should be chosen based on where visible deviations from
Curie–Weiss behavior are observed.

7. If your plot of χ�1
mol vs. T shows positive or negative

curvature, rather than a strictly linear trend, the likely
origin is a temperature independent contribution to
susceptibility, χ0. As shown in Fig. 3, even a relatively
small χ0 can result in significant curvature when the data is
plotted as χ−1. This temperature independent term can
have many origins including: core diamagnetism (both
from the sample or from the sample holder), Pauli
paramagnetism, or van Vleck paramagnetism. If the
curvature is positive (red curve in Fig. 3) this indicates a
positive χ0 while if the curvature is negative (blue curve)
this indicates a negative χ0. In this case a modified form of
the Curie–Weiss law can be applied.

χ ¼ C
T � θCW

þ χ0; χ�1 ¼ T � θCW
χ0 � ðT � θCWÞ þ C

ð9Þ

At this stage, it is wise to verify that the magnitude and sign
of χ0 is physically consistent with its expected origin.

While these generic steps will work in many cases, there are
times that they will fail to yield meaningful results. It is equally
important to avoid misapplying the Curie–Weiss law—an
equation that was described by Van Vleck as “the most
overworked formula in the history of paramagnetism24.” If there
is no physical justification for local magnetic moments in the
sample you are studying, then the results obtained from a
Curie–Weiss fitting will not be valid, even if the equation fits.
Even in cases where local moments are present, there are other
factors that can lead to the breakdown of Curie–Weiss behavior,
such as low-dimensionality, high-spin to low-spin crossovers, and
intermediate valence. Each of these gives rise to a characteristic
temperature-dependence in susceptibility that disrupts conven-
tional Curie–Weiss behavior. In the sections that follow, we
present specific case studies among 3d transition metal and 4f

rare earth-based systems. We consider systems that both adhere
to conventional Curie–Weiss behavior as well as exceptions to
the rule.

4f rare earth magnets. In the 4f rare earth block there is a clear
hierarchy of energy scales that guides the interpretation of
magnetic susceptibility data. Owing to their large mass,
spin–orbit coupling, which scales as Z4, dominates over all other
magnetic energy scales. As a result, magnetic rare earth elements
are the canonical Hund’s rules ions. The partially filled 4f orbitals
are highly localized and shielded from their neighboring ions by
the more spatially extended, fully occupied 5s and 5p orbitals and,
as a result, the crystal electric field is significantly weakened.
These highly localized 4f orbitals also have minimal direct or
indirect orbital overlap. Consequently, in insulating rare earth
magnets, exchange interactions (see Box 1) tend to be very weak
and magnetic ordering temperatures of 1 K or lower are typical.
In metallic rare earth magnets, while the 4f moments themselves
generally retain a local character, the interactions can be
enhanced due to conduction electron mediated exchange via the
RKKY mechanism25–27, leading to magnetic ordering tempera-
tures on the order of 10 K.

Rare earths (with a few notable exceptions) are almost always
found in their trivalent state28, R3+, with a total angular
momentum, J, accurately estimated using Hund’s rules. This angular
momentum defines the spin orbit ground state manifold, which has
a degeneracy of 2J+ 1 states. Higher order spin–orbit manifolds are
split by an amount proportional to the atomic spin–orbit coupling,
which for rare earths is typically 1 eV (≅104 K) or higher. Therefore,
at the temperatures relevant to a typical susceptibility measurement,
one can ignore them altogether. Inspection of Fig. 4 shows that the
calculated Hund’s rules moments (μcal) are in excellent agreement
with the observed values (μobs) for the majority of rare earth ions.
Next, the crystal field lifts the degeneracy of the 2J+ 1 states,
inducing crystal field splittings between 10 and 100 meV. This
crystal field splitting can introduce intense spin anisotropy. This
anisotropy, which often manifests as directional dependence in
single crystal susceptibility measurements, is most pronounced at
low temperatures but in some cases can extend significantly beyond
room temperature. In measurements of polycrystalline samples this
information is lost due to directional averaging. In the case of ions
with an odd number of total electrons, indicated in blue in Fig. 4, a
magnetic (doublet) ground state is guaranteed by Kramers theorem,
while those with even electron counts, shown in pink, can have non-
magnetic singlet ground states depending on the specific nature of
the crystal field splitting.

The question we now come to is, over what temperature range
should the Curie–Weiss law be applied in rare earth magnets?
The exact temperature range is, of course, material dependent but
for most rare earth magnets reasonable adherence to Curie–Weiss
behavior is obtained in the temperature range of 200 to 400 K.
The reason for the breakdown of Curie–Weiss behavior at lower
temperature is two-fold. First, as temperature decreases, the
excited crystal field levels become thermally depopulated as the
material enters its crystal field ground state. Depending upon
which mJ basis states form the crystal field ground state, the
magnetic moment can significantly decrease from the Hund’s
rules value. Secondly, at lower temperatures, when the energy
scale of the magnetic interactions becomes comparable with the
thermal energy, the system can no longer be treated as an
uncorrelated paramagnet.

A noteworthy exception occurs for an exactly half-filled 4f
electron shell, as is the case for Eu2+, Gd3+, and Tb4+ (Fig. 4).
For these ions, there is no orbital (L) component to the total
angular momentum. Consequently, the crystal field leaves the

Fig. 3 Effect of a temperature independent contribution to susceptibility
on Curie–Weiss behavior. The effect of a small temperature independent
contribution to the magnetic susceptibility, χ0, on Curie–Weiss behavior.
The yellow curve shows the behavior or a material with χ0= 0 while blue
and red include, respectively, a small negative and a small positive χ0. a In
the direct susceptibility, Curie–Weiss behavior is still evident for all three
curves, b while in the inverse susceptibility a significant positive (red) or
negative (blue) curvature is observed that must be accounted for (see Eqn.
(9)) in order to fit the data.
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Hund’s rules manifold nearly degenerate and Curie–Weiss
behavior is observed to much lower temperatures, until interac-
tions set in, as can be seen in the susceptibility of Gd2O3 shown in
Fig. 5(a). The data can be well fit by a Curie–Weiss Eqn. (8) from
400 K all the way down to 25 K. This fit yields an effective
moment of μeff= 7.96 μB, which is in excellent agreement with
the Hund’s rules moment of μcalc= 7.94 μB for Gd3+, while
θCW=− 14 K, which is reasonable given that this material is
known to order antiferromagnetically at TN= 3.8 K29.

In other rare earths, the value of θCW, must be treated with
caution. Except in the case of the exactly half-filled 4f electron shell
described above, a high-temperature fitting of θCW will include
contributions from thermally populated crystal field levels that are
not present at the low temperatures where interactions become
relevant. Therefore, θCW in most rare earth magnets will invariably
overestimate the strength of the interactions. For example, a
Curie–Weiss fit to the susceptibility of Yb2O3 between 200 and
400 K (Fig. 5(b)) gives an effective moment of μeff= 4.64 μB, in good
agreement with μcalc= 4.54 μB for Yb3+ (Fig. 4), but an unphysically
large θCW=− 81 K. A rigorous treatment of this problem would
require an experimental determination of the material’s full crystal
field scheme, as can be achieved with inelastic neutron scattering or
Raman spectroscopy. One can, however, approximate the effect of
excited crystal field levels using the following two-level equation30,31,

χ�1 ¼ 8 � ðT � θCWÞ � μ2eff ;0 þ μ2eff ;1 � e�
E1
kBT

1þ e�
E1
kBT

0
@

1
A ð10Þ

where E1 is the energy splitting to the first excited crystal field level,
with an effective moments of μeff,1, while μeff,0 is the effective
moment of the crystal field ground state. Applying this model to
Yb2O3 extends the fits to significantly lower temperature, 25 to
400 K, and yields a more physical value of θCW=− 9 K and a
ground state moment of μeff,0= 3.67 μB, consistent with a crystal
field ground state made-up of largely mJ= 5/2. This equation can be
extended to include a second excited crystal field level, but this leads
to a highly under constrained fit, with too many adjustable
parameters to be reasonably determined by a 1-dimensional data set.

In relatively few rare earth magnets, straightforward
Curie–Weiss behavior is not observed over any temperature
window. There are a few ion specific factors that can lead to this
effect. One is an appreciable temperature independent van Vleck
contribution to susceptibility, which frequently occurs for Sm3+

and Eu3+ compounds, due to their smaller splitting to the first
excited spin–orbit manifolds. The telltale sign for this effect is
pronounced curvature in the inverse susceptibility, χ−1, as shown
for Sm2O3 in Fig. 5(c). A good fit of the data can be obtained by
including a temperature independent term, as given by given by
Eqn. (9), which gives a van Vleck contribution of χvv= 7.9 ×
10−4 emumol�1

Sm, indicated by the gray dashed line, θCW=− 13
K, and μeff= 0.58 μB. Another factor that can produce significant
curvature in χ−1 in metallic rare earth magnets is a large Pauli
contribution to the susceptibility, χP. In this case one can fit to the
same modified version of the Curie–Weiss law.

Finally, in the special cases of Ce3+ (4f1) and Yb3+ (4f13),
which are both a single electron from a closed shell configuration,
there is an instability towards the 4+ and 2+ valence,
respectively. As a result, some unique behaviors can arise in
Ce and Yb metallic magnets. Some will exhibit an intermediate
valence due to a near degeneracy of the two valence
configurations32, which produces a characteristic broad hump
in susceptibility and a disruption of Curie–Weiss behavior33. In
systems in which the rare earth ion occupies multiple crystal-
lographic sites, a mixture of valences is also possible such that
some sites are magnetic and some are non-magnetic, in which
case Curie–Weiss behavior should be retained.

3d transition metal magnets. Moving into the 3d transition
metal block there are a number of significant differences from the
4f case that one must pay attention to when interpreting sus-
ceptibility data. First we will consider the critical difference in the
nature of the partially filled electron orbitals themselves. Whereas
4f electron orbitals are spatially localized and are therefore not
significantly involved in either chemical bonding or in electrical
conduction, partially filled 3d orbitals are significantly involved in
both. This complicates matters, particularly in the case of metallic
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J = 4
gJ = 4 5

μcal = 3.58 μB

μobs = 3.5 μB
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μcal = 3.62 μB
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J = 5 2
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Eu3+

J = 0 (L = S)
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μcal = 0 μB
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J = S = 7 2
gJ = 2
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Fig. 4 Schematic illustration of the magnetic properties of rare earth ions. Magnetic properties of rare earth ions in their divalent (top row), trivalent
(middle row) and tetravalent (bottom row) states arranged according to their number of f electrons. Each entry includes the Hund’s rules total angular
momentum J, the Landé g-factor gJ, the calculated paramagnetic moment μcal ¼ gJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJþ 1Þ

p
, and the experimentally observed paramagnetic moment μeff.

Excellent agreement between the calculated and observed moments is found for almost all rare earths. Poor agreement for Sm3+, Eu3+, and Pr4+ is due to
the proximity of the next highest spin–orbit manifold. The blue shaded ions have an odd number of electrons and therefore Kramers ions, which are
guaranteed to have at least a ground state doublet while the pink shaded ions are non-Kramers ions, where a non-magnetic singlet ground state is allowed
by symmetry. Non-magnetic Ce4+ and Yb2+ are not included here.
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3d transition metal compounds, where electronic and magnetic
degrees of freedom may be strongly intertwined. In some cases,
the magnetism can be quenched altogether giving rise to a
paramagnetic metal. However, in cases where the magnetism
persists, the moments will have a mixed local and itinerant
character that even in the case of the seemingly simple elemental
metals (Cr, Fe, Co, Ni) remains a challenge to theoretically
describe34. We will therefore focus our remarks here on insulating
materials with unpaired 3d electrons.

Having narrowed our scope to insulators we next consider the
reorganization of energy scales, which in turn modifies
the magnetic character of the 3d transition metal ions. Since
the partially filled d electron orbitals are also the most spatially
extended orbitals, they are the ones that participate in chemical
bonding. As a result, their direct overlap with the ions in their
local environment (ligands) is larger and the energy scale of the
crystal electric field is substantially enhanced. In fact, for 3d
transition metal compounds, the crystal field is the largest
magnetic energy scale, with splittings larger than 1 eV being
common, depending on the ligand. The filling of the 3d electron
orbitals is strongly determined by the symmetry of the local
environment, as illustrated in Fig. 6 for octahedral and tetrahedral
ligand fields, which induce a splitting between the t2g states (dxy,
dxz, dyz) and the eg states (dz2 , dx2�y2 ). In the octahedral case,
depending on the magnitude of the splitting, either high-spin or
low-spin states can be found, as indicated by the yellow and pink
shading in Fig. 6, while in the tetrahedral case the energy splitting
is smaller and only high-spin states are commonly observed. It is
important to emphasize that while octahedral and tetrahedral
ligand fields are the most common for 3d compounds they are by
no means the only local environments you can encounter, which
will in turn modify the crystal field splittings between 3d orbitals

and the number of unpaired d electrons. For a more detailed
overview of ligand field theory we refer the reader to the classic
texts on this topic35,36.

The modified energy scale also changes the nature of the 3d
magnetic moment in-and-of-itself due to the breakdown of
Hund’s rules. First, as compared to the 4f rare earths described
previously, spin orbit coupling (which scales as Z4) no longer
dominates and, in fact, can largely be ignored. Further, as a result
of the enhanced Coulomb interactions with surrounding ions, it is
too energetically costly to transform one 3d electron orbital into
another via rotation, meaning that the time-averaged magnitude
of the orbital moment approaches zero, which is termed
“quenching” of orbital angular momentum (Kittel provides a
detailed quantum mechanical treatment37). In 3d magnets, one
finds that the magnetic moment is very well approximated by the
spin-only moment, which means that the problem is essentially
reduced to one of counting unpaired electrons. The spin-only
moment can be calculated using Eqn. (5) by replacing J with S
and where g= 2, reflecting the isotropic nature of the moment,
giving

μcal ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ

p
μB: ð11Þ

Examination of the calculated spin-only moments, μcal, and the
commonly observed moments, μobs, in Fig. 6 generally shows very
good agreement, particularly for the ions with the smallest mass
(spin–orbit coupling). Finally, larger orbital overlap also leads to
an enhancement of the superexchange interactions, with 3d
transition metal oxides commonly ordering at temperatures on
the order of 100 K, with a small number of compounds even
exceeding 1000 K.

This enhancement of exchange interactions is apparent in the
magnetic susceptibility data of MnO, shown in Fig. 7(a), which
exhibits a pronounced cusp at TN= 120 K, marking an
antiferromagnetic ordering transition. Plotting the inverse
susceptibility reveals Curie–Weiss like behavior that extends
from 400 K to just above the ordering transition. Applying Eqn.
(11) between 200 and 400 K gives a fitted moment of μeff= 6.00
μB, which agrees very well with the expected high-spin moment
for Mn2+ in an octahedral ligand field with five unpaired d
electrons (Fig. 6(a)). The Curie–Weiss temperature is calculated
to be θCW=− 610 K, which is fivefold larger than the magnetic
ordering temperature, but still in the typical range for antiferro-
magnets as described previously.

Another important distinction between 4f and 3d magnetism is
that in the former case, we expect deviations from Curie–Weiss
behavior due to the changing magnetic moment associated with
the gradual thermal de-population of excited crystal field states.
In contrast, magnetic moments are most often independent of
temperature in a 3d transition metal compound, as is the case in
the previous example of MnO. However, there are exceptions to
this rule in cases where the energy of high-spin and low-spin
configurations are similar, as can occur for ions with between four
and seven unpaired 3d electrons in octahedral ligand fields
(Fig. 6(a)). In such cases, a temperature-induced crossover
between high-spin and low-spin configurations can occur, which
is associated with decreased lattice vibrations. Such crossovers are
most frequently observed in compounds with organic ligands
where inter-ion magnetic interactions are approaching non-
existent. In contrast to the gentle curvature associated with
thermal de-population of rare earth crystal field levels, these
spin crossovers are typically abrupt, giving rise to a sharp
decrease in magnetic moment, such as the one seen for
Co(tmeda)(3,5-DBQ)2 ⋅ 0.5C6H6, an organic Co2+ compound,
just below 200 K in Fig. 7(b)38. This crossover can be appreciated
most clearly by plotting μeff ¼

ffiffiffiffiffiffiffiffi
8χT

p
as a function of

Fig. 5 Representative examples of Curie–Weiss behavior in rare earth
magnets. The magnetic susceptibility (left axis, filled symbols) and inverse
magnetic susceptibility (right axis, open symbols) normalized per mole of
rare earth for a Gd2O3, which is well-fitted by a standard Curie–Weiss
(CW) law, b Yb2O3, which is well-fitted by a modified Curie–Weiss law that
incorporates an excited crystal field, and c Sm2O3, which is well-fitted by a
Curie–Weiss law plus a van Vleck (VV) contribution, all measured in an
applied field of H= 1000Oe.
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temperature as shown in Fig. 7(c), under the assumption that
correlations are negligible (θCW= 0). In the high-temperature
regime, the effective moment is μeff= 5.5 μB, in good agreement
with the high-spin moment for Co2+, which has a moderate
orbital contribution. In the low-temperature limit the moment
goes to μeff= 1.7 μB, the expected moment for low-spin Co2+

(Fig. 6(a)).
Another factor that can lead to the breakdown of Curie–Weiss

behavior is low-dimensional magnetism, and in particular quasi-1-
dimensional magnetism. This type of behavior is observed when
the magnetic exchange interactions are dominant along just one
spatial direction, such that interactions in the other spatial
directions can be largely neglected. Such materials, which are
most commonly based on 3d-transition metals, can usually be
identified from their crystallography as the 1-dimensional nature
of the interactions is underpinned by the atomic arrangement
of the magnetic ions into chain-like motifs. In the high-
temperature paramagnetic limit, where thermal fluctuations are
dominant, a quasi-1-dimensional magnet should exhibit the
typical Curie–Weiss susceptibility according to its spin state and
local environment (Fig. 6). However, in the lower temperature
limit where the energy scale of spin-spin interactions become
comparable with temperature, magnetic order is suppressed by
the low-dimensionality and a characteristic broad hump is
observed in susceptibility. This can be seen in the susceptibility
of SrCuTe2O7, a material with zigzag chains, in Fig. 7(d). This
material has Curie–Weiss like susceptibility that holds to
approximately 100 K. A number of theoretical works studying
1-dimensional chain models have reproduced this characteristic
broad maxima in the susceptibility39,40, which can be straightfor-
wardly fit in experimental data using a polynomial

approximation41 of the exact solution40. The one shown for
SrCuTe2O7 gives an exchange coupling strength of J= 108 K,
commensurate with where the observed breakdown of
Curie–Weiss behavior occurs, and an effective moment of 1.82
μB, consistent with the expected moment for Cu2+. The various
phenomena of low-dimensional magnetism are covered in-depth
by other sources42,43 and Landee and Turnbull give a detailed
treatment of the magnetic susceptibility of low-dimensional
magnets44.

4d and 5d transition metal magnets. Magnetic materials based
on magnetic 4d and 5d transition metals are relatively fewer than
their 3d and 4f counterparts. The partially filled 4d and 5d orbitals
are even more spatially extended than in the 3d case, such that
orbital overlap with neighboring ligands increases and thus the
crystal field is very large. Meanwhile the on-site (Hubbard)
repulsion for doubly occupying a given orbital is reduced. As a
result of these two periodic trends, a large fraction of 4d and 5d
materials are metals without localized magnetic moments. For
example, not a single elemental metal in the 4d or 5d block is
magnetically ordered, in contrast to the magnetic elemental
metals that make up nearly half the 3d block. Likewise, mag-
netism (besides Pauli paramagnetism) in intermetallics based on
4d and 5d transition metals is almost unheard of45. In the smaller
fraction of insulating 4d and 5d materials, unpaired valence
electrons can still give rise to localized magnetic moments that
will behave according to the Curie–Weiss law in the paramagnetic
regime. This scenario is typically borne out in systems where
inter-ion exchange is especially weak, as in molecular magnets46

or in crystalline solids with particularly large spacings between
neighboring 4d or 5d ions, such as double perovskites and related

Fig. 6 Schematic illustration of the magnetic properties of 3d transition metal ions. Magnetic properties of various 3d transition metals in their common
valence states in a octahedral and b tetrahedral ligand fields arranged according to their number of d electrons. Owing to quenching of orbital angular
momentum, their calculated moments, μcal ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ

p
, are best estimated from the spin-only, S, value with an isotropic Landé g-factor, g= 2, giving

good agreement with the observed moments, μobs. In the octahedral case, the crystal field ground state is formed by the three degenerate t2g states with a
crystal field splitting to the two higher energy eg states, while the opposite pattern is observed for the tetrahedral case. When there are between four (3d4)
or seven (3d7) electrons in the 3d-orbitals, either high-spin (yellow) or low-spin (pink) states can be observed for the octahedral case, with the overall
crystal field splitting determining which is energetically preferred. The smaller crystal field splitting in the tetrahedral case means that high-spin states are
always obtained, with very few exceptions. Observed moments that exceed the calculated moment, such as for Co2+, imply an intermediate spin–orbit
coupling and an incomplete quenching of orbital angular momentum.
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structures47. Insulating states can also be found in materials
where the chemical bonding is strongly ionic, such as halides, or
in materials where spin–orbit coupling is so intense as to produce
a correlated Mott insulating state48.

There are fewer hard and fast rules that can guide the
interpretation of magnetic susceptibility data in the 4d and 5d
block. These materials tend to exist in a realm that is intermediate
to the quenched orbital angular momentum of 3d transition
metals and the Hund’s rules adherence of 4f rare earth ions. Spin
orbit coupling is too large to be neglected but may not be so large
as to generate a full orbital contribution to the moment
(Ma et al.49 provide calculated ion specific spin–orbit coupling
constants). Owing to the stronger crystal field and weaker on-site
repulsion, 4d and 5d ions are almost exclusively found in low-
spin electron configurations, regardless of the specific ligand. As a
result, there is less variability in which ions can even be magnetic
in the first place. Among the 4d block, only Mo, Ru, and Rh are
commonly observed to be magnetic, while among the 5d block,
local moment magnetism is only observed for Re, Os, and Ir.
Further complicating matters is that due to their larger ionic radii,
4d and 5d ions are more commonly encountered in lower
symmetry local environments than their 3d counterparts,

meaning that the crystal field splitting can be more complex
than the simple octahedral or tetrahedral cases described
previously. Spin–orbit coupling can further split these crystal
field states such that, in some cases, it is difficult to predict the
paramagnetic moment a priori.

When Curie–Weiss behavior is observed in 4d and 5dmagnets,
it can sometimes be used to evaluate the strength of the
spin–orbit coupling. Assuming that one has a reasonable grasp of
the likely valence state of the 4d or 5d ion in question (say in the
case of an oxide or halide where the valences of all other ions is
known), then one can compare the size of the fitted paramagnetic
moment with the expected value in the two limiting cases: the
spin only moment and the full Hund’s rules moment. However,
in the latter case one must take care, as the presence of strong
spin orbit coupling can further split the crystal field levels, which
in some cases can lead to ambiguous results. To illustrate these
points, we take the 4d ion Rh4+ as an example. In the absence of
strong spin–orbit coupling and in an octahedral crystal field,
Rh4+ with a 4d5 electronic configuration would have a single
unpaired electron in its t2g orbitals, giving a local moment with
S= 1/2. In the presence of strong spin orbit coupling, such as in
Sr4RhO6, the t2g orbitals are split into an effective j= 3/2
quadruplet and an effective j= 1/2 doublet (Rau et al.50 provide a
full description of this effect). In this case, the observed moment
may be only slightly enhanced from the S= 1/2 case51. While
Curie–Weiss behavior is observed in both of these scenarios,
distinguishing between them requires direct spectroscopic
evidence of the splitting of the t2g orbitals52. In still other Rh4+

materials, such as Sr2RhO4, a metallic state is observed involving
the rhodium 4d band. Therefore, no local moment is observed
and the susceptibility shows only Pauli paramagnetism53. Martins
et al. provide an excellent survey of how these spin–orbit effects
play out in other 4d and 5d oxides54.

Magnetic frustration. The phrase “magnetic frustration” imme-
diately evokes images of unhappy spins, unable to accomplish
their goals. This imagery turns out to be essentially correct.
Magnetic frustration refers to materials that experience compet-
ing interactions that cannot be simultaneously fulfilled, resulting
in a large degeneracy of ground state spin configurations. This
frustration can arise due to constraints of the lattice geometry (so-
called “geometric frustation”, as observed for the kagome lattice),
or competing interactions (as observed in the J1-J2 square lattice),
or both. The end result of frustration is a suppression of the
magnetic ordering transition as the system struggles to find a
suitable compromise and, frequently, a more exotic form of
magnetic order or perhaps no discernible order at all. Magnetic
frustration is a fascinating topic on which many excellent reviews
exist55–60. Here, we will limit our remarks to the key role mag-
netic susceptibility measurements can play in identifying a
magnetically frustrated material.

In order to benchmark whether a material is magnetically
frustrated one can apply the Curie–Weiss law to determine its
frustration index, f, which is defined as:

f ¼ θCW
TN

or f ¼ θCW
Tf

; ð12Þ

where TN and Tf are the temperatures at which the system
magnetically orders or freezes, respectively. In cases where no
ordering or freezing is observed, the lowest measured temperature
(e.g., 1.8 K in a typical 4He experiment) can be substituted for TN

to provide a lower bound on the frustration index. The general
idea underlying the frustration index is that the Curie–Weiss
temperature θCW parameterizes the strength of the magnetic
interactions and, therefore, an unfrustrated material would be

Fig. 7 Representative examples of Curie–Weiss behavior in 3d transition
metal magnets. The magnetic susceptibility (left axis, filled symbols) and
inverse magnetic susceptibility (right axis, open symbols) normalized per
mole of transition metal for a MnO measured in a field of H= 1000 Oe,
which is well-fitted by a standard Curie–Weiss (CW) law, b reproduced
data for Co(tmeda)(3,5-DBQ)2 ⋅ 0.5C6H6 measured in a field of
H= 5000Oe38, which is an organic Co2+ complex that undergoes a
crossover from high-spin to low-spin just below 200 K with two distinct
Curie–Weiss regimes. c shows the temperature dependence of μeff ¼ffiffiffiffiffiffiffiffi
8χT

p
as a function of temperature, which is the conventional way of

presenting susceptibility data for a spin crossover complexes, and
d SrCuTe2O7 measured in a field of H= 10, 000 Oe, which is well-fitted by
a Curie–Weiss law at temperatures above 200 K but exhibits an anomaly
characteristic of 1-dimensional interactions at lower temperature.
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expected to order at roughly this temperature, yielding f= 1. In
reality, typical unfrustrated materials can have f= 2−5, due to the
fact that further neighbor interactions are not incorporated into
the derivation of the Curie–Weiss law. Magnets with ordering
temperatures that are significantly suppressed by the effects of
frustration are typically observed to have f > 5 with some
materials exceeding f= 10055,56. This rule-of-thumb works best
in 3d transition metal magnets where θCW values can typically be
trusted and higher ordering temperatures are typically expected.
Conversely, one must exercise great caution in the same
treatment of 4f magnets due to crystal field effects that can
artificially inflate θCW and the typically lower ordering
temperatures.

Outlook
Magnetic susceptibility is akin to fingerprinting in the forensic
sciences in its ability to reveal the magnetic identity of a
material. Over the last century, the increasing ease, availability,
and quality of magnetic susceptibility data have made this
technique the preferred first step in the characterization of most
new magnetic materials. As we have detailed in this tutorial, the
information that can be gleaned through this one simple mea-
surement is immense. If the data are treated appropriately, one
can determine the magnetic identity of the material, whether it
be paramagnetic or diamagnetic, the presence or absence of a
magnetic ordering or freezing transitions, anisotropy in single
crystal measurements, low-dimensionality or frustration, among
others. Technological advances are allowing measurements to be
more routinely performed under ever-more extreme conditions,
high-magnetic field, helium-3 and dilution refrigerator tem-
peratures, high-pressure conditions, and even the combination
of the three61–63. These technical advances will further extend
the utility of magnetic susceptibility measurements. There can
therefore be no doubt that magnetic susceptibility will remain
one of the most useful and versatile tools in the characterization
of magnetic materials.
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